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ABSTRACT 

In this article, we introduce a generalized Laplace transform and fractional equations of distributed orders and 

evaluate the results of the complex inversion formula for the exponential Mellin transform, the exponential Laplace 

transform of ��-Derivatives. 
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1. INTRODUCTION 

This section is devoted to a presentation of some basic facts from the theory of the Mellin integral transform that 

are used in the further discussions. For more information regarding the Mellin integral transform including its properties 

and particular cases we refer the interested reader to e.g. [2], [3], [5]. 

The Mellin integral transform of a sufficiently well-behaved function f is defined as 

M{f(t); s} = �∗(s) = � �(�)�	
��∞



dt                                      (2.1) 

and the inverse Mellin integral transform as 

                 f(t) = M-1{f(t);s} 

 = �∗(s) = 
�

���
� �∗(�)t
�ds, t > 0, � = ℜ(s)

���∞

�
�∞
                       (2.2) 

Where the integral is understood in the sense of the Cauchy principal value.  

It is worth mentioning that the Mellin integral transform can be obtained from the Fourier-integral transform by 

the variables substitution t=�� and by rotation of the complex plane by a right angle: 

M{f(t); s} = �∗(s) = � �(�)�	
��∞



dt = � �(��)

�∞


∞
���(
�	)�� =ξ{�(��) ���(
�	)��    

                                                                  = ξ{f ��);
�	}, 

Where ξ {f(x); κ} denotes the Fourier transform of the function f at the point κ. Accordingly, the inverse Mellin 

transforms and the convolution for the Mellin transform can be obtained by the same substitutions from the inverse Fourier 
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transform and the convolution of  the Fourier transform. The integral in the right-hand side of (2.1) is well defined, e.g. for 

the functions f ∈ Lc(,E), 0 < _ < E < ∞ continuous in the intervals (0, _] , [E,+∞) and satisfying the estimates |f(t)| ≤ M 

t−γ1 for 0 < t < _, |f(t)| ≤ M t−γ2 for t > E, where M is a constant and γ1 < γ2 . If these conditions hold true, the Mellin 

transform f∗(s) exists and is an analytical function in the vertical strip γ1 < _(s) < γ2. If a function f is piecewise 

differentiable, f(t) tγ−1 ∈ Lc(0,+∞), and its Mellin integral transform f∗(s) is given by (2.1) then the formula (2.2) holds 

true at all points, where the function f is continuous. 

The Mellin Convolution 

(fM∗g)(x) = � �(
�

!

�∞



)g(t)

"!

!
                                                                                       (2.3) 

plays a very essential role in the further discussions. It is well known (see e.g. [35]) that if f(t) tγ−1 ∈ L(0,∞) and 

g(t) tγ−1 ∈ L(0,∞) then the Mellin convolution h = (f M∗ g) given by (2.3) is well defined, satisfies the important property 

M{(� #)(�); �∗
$ % = m{f(t);s}. M{g(t);s},                                         (2.4) 

And h(x)��
�∈L(o,∞). Morever, the Parseval equality 

� �(
�

!

�∞



)g(t)

"!

!
   = 

�

���
 � �∗(�)#∗���∞

�
�∞
(s)�
	 ds                                                        (2.5) 

hold true. 

Theorem 2.1 (The Complex Inversion Formula for the Exponential Mellin Transform) 

Let F(P) be an analytic function of p (assuming that F(P) has not the  has not the branch point) except a finite 

number of poles and each of poles lies to the left of the vertical line ℜp = c . If F(p)→ 0 as p→∞  through the left plane       

ℜp ≤c, and 

M{f(x);P} = F(P) = � �&
��(�)��
∞



 

               M-1{F(P)} = f(x) = 
�

���
� '(()�
)*��∞

*+�∞
dp 

Proof: By definition of the exponential Laplace transform (1-1) and letting P = r, we 

Have  

F(r) = � �&
��(�)
∞



dx 

now, by setting t = p -1 in the above relation, we obtain 

              F(r) = � �!�(�)��
∞



 

                     = M{f(t);r} 

At this point, by the complex inversion formula for the Mellin transform and setting back 

t-x,r=P, we get finally 
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f(x) = 
�

���
� '(()�
)*��∞

*+�∞
dp 

Theorem 2.2 (The Exponential Laplace Transform of ,--Derivatives) 

Let f; f’,….. fn-1 are continuous functions with piecewise continuous derivative f(n) on the 

interval x ≥0 and if all functions are of exponential order  �&
�	as x→∞ (i.e. jf(x)≤ M�&
� for some constants c; M, then 

for n = 1,2,…… 

M{��
/�(�): (% = (−()/F(P)M{f(x):P}-(−()/
�F(P)f(0+) - (−()/
�F(P)(��f)(0+) - ……….- (��

/
�f)(0+) 

where the ��-derivative operator is defined as follows 

 �� = x
"

"�
 

And by notation  

��
� = (��)(��)  

     = �� "2

"�2 

     = �� "2

"�2 +
�′′

�′4
"

"�
 

The �� -derivative for any positive integer power can be found. 

Proof: Using the definitions of the exponential Mellin transform (1.1) and the �� –derivative, by integration by 

parts, we obtain 

M{ ���(�); (% = � �&
�� ′(�)
∞



dx  = �&
�f(x)|


∞+(p -1)� �&
�� ′′(�)
∞



dx 

Since f is of exponential order �&
� as x→∞. follows that 

 lim�→∞ �&
��(�) = 0 

Consequently  

M{ ��f(x):P}  =  �&
�9{�(�); (% − �(0�) 

Similarly, by repeated application of the above relation once again, we get 

M{ ��
�f(x):P} = �&
�9{��f(x):P)- (���)(	0�) 

       = �&
�9{�(�): (% − �&
��(0�) − (���)(0�) 

And by repeating the above scheme for ��
/f(x). 
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