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ABSTRACT

In this article, we introduce a generalized Laplaemsform and fractional equations of distributeders and
evaluate the results of the complex inversion fdarfer the exponential Mellin transfornthe exponential Laplace

transform ofé, -Derivatives.
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1. INTRODUCTION

This section is devoted to a presentation of soasictfacts from the theory of the Mellin integnadrtsform that
are used in the further discussions. For more imé&ion regarding the Mellin integral transform umting its properties

and particular cases we refer the interested rdadeqg. [2], [3], [5].

The Mellin integral transformf a sufficiently well-behaved functidris defined as

M{f(t); s}=£7(9) = J, F(©)t"dt (2.1)
and the inverse Mellin integral transfoam

®) = M{f(0);s}
= f*(9 =$f;:rii:°f*(s)t‘sds, t>0,y = R(s) 2.2)
Where the integral is understood in the senseeoCiduchy principal value.

It is worth mentioning that the Mellin integral trsform can be obtained from the Fourier-integrahsform by

the variables substitution ¢* and by rotation of the complex plane by a righilan
MEF(D); k=19 = [y F(Oe dt= [T f(e¥) e* T dx =£{(f (e¥) e* ) dx

%{f ¥},

Where¢ {f(x); x} denotes the Fourier transform of the functiat the pointc. Accordingly, the inverse Mellin

transforms and the convolution for the Mellin triamm can be obtained by the same substitutions tieninverse Fourier
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transform and the convolution of the Fourier tfarma. The integral in the right-hand side of (24 )vell defined, e.g. for

the functiond € Lc(,E), 0 < _ < E < o continuous in the intervals (0] , [E,+o0) and satisfying the estimatiét)] < M

t—y1 for 0<t < _, [f(t)] <M t—y2 fort > E, whereM is a constant angl < y2 . If these conditions hold true, the Mellin

transformfa(s) exists and is an analytical function in the aatistripyl < _(s) < y2. If a functionf is piecewise
differentiable,f(t) ty—1 e Lc(0,+), and its Mellin integral transforr(s) is given by (2.1) then the formula (2.2) holds
true at all points, where the functibis continuous.

TheMellin Convolution
(0)) = f; " FOa (2.3)

plays a very essential role in the further disaussi It is well known (see e.g. [35]) thaff(i) ty—1 € L(0,.0) and

g(t) ty—1 € L(0,:0) then the Mellin convolutioh = (f ™ *g) given by (2.3) is well defined, satisfies the rgant property

M{(fg)(x); s} = m{f(t);s}. M{g(t);s}, (2.4)
And h(x)x”~10L(0,). Morever, the Parseval equality

oo o X dt _ 1 Y+io ., " —s
LG0T == [ fr()g (s ds (2.5)
hold true.
Theorem 2.1 (The Complex Inversion Formula for theExponential Mellin Transform)

Let F(P) be an analytic function of p (assuming th@) has not the has not the branch point) exadpnite
number of poles and each of poles lies to thedkthe vertical linellp = ¢ . If F(p)» 0 as p-o through the left plane
Op=<c, and

M{f(x);P} = F(P) = [.”

o XPTHf()dx
M{F(P)} = f(x) = — [ F(P)x~Fdp

Proof: By definition of the exponential Laplace transfofial) and letting P =r, we

Have
F(n) =J; 2"~ f (0 dx
now, by setting t = p -1 in the above relation,oftain
F() o, xf ()t
= M{f(t);r}
At this point, by the complex inversion formula the Mellin transform and setting back

t-x,r=P, we get finally
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1 +ic0 -
f(x) =~ J._,, F(P)x~"dp
Theorem 2.2 (The Exponential Laplace Transform ob,-Derivatives)

Letf; f,..... "1 are continuous functions with piecewise continudeisvative f on the

interval x>0 and if all functions are of exponential ordef~! as x-w (i.e. jf(x)< MxP~! for some constants ¢; M, then

M{82f (x): P} = (—P)"F(P)M{f(x):P}- (—P)" LF(P)f(0” - (=P)"2F(P)E,H)(0") - .......... - (677)(0M
where thed, -derivative operator is defined as follows

(Sx = XE
And by notation

8% = (6:)(8%)

Thed, -derivative for any positive integer power canfésend.

Proof: Using the definitions of the exponential Mellinrisfiorm (1.1) and thé, —derivative, by integration by

parts, we obtain
M{8,f (x); P} = fy xP7f ()dx =xP"H(x)[5+(p -1)f; 2P =2 " (x)dlx
Since f is of exponential ordeP~! as x- . follows that
lim,_,, xP"1f(x) =0
Consequently
M{ 6,f(x):P} = xP~*M{f (x); P} — f(07)
Similarly, by repeated application of the abovatieh once again, we get
M{ 821(x):P} = xP~1M{8,(x):P)- (6,)(0*)
=xP72M{f (x): P} — xP71f(0%) — (8,f)(0%)
And by repeating the above schemedpf(x).
REFERENCES

1. A. Ansari, Generalized Mellin transform and fracté differential equations of distributed orderde@ronic
journal, N 3, 129-138.

2. A.V.Bobylev, C. Cercignani, The inverse laplae@sform of some analytic functions with an apgimato the
eternal solutions of the Boltzmann equation, Apfdth. Lett., 15 (2002) 807-813.

www.iaset.us editor @ aset.us



22

10.

11.

12.

A. K. Thakur, Geeta Kewat & Hetram Suryavanshi
M. Caputo, Linear models of dissipation whose Qalimost frequency independent. Il, Geophys. J. Roy.
Astronom. Soc., 13 (1967) 529-539.
M. Caputo, Elasticita e dissipazione, Zanichellbl@®jna, 1969 (in Italian).

R. Goreno, Yu. Luchko, F. Mainardi, Analytical peofies and applications of the Wright function, EraCalc.
Appl. Anal., 2 (1999) 383-414.

R. Goreno, Yu. Luchko, F. Mainardi, Wright funcas scale-invariant solutions of the di_usion-wagaation,
J. Comput. Appl. Math., 118 (2000) 175-191.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theoand applications of fractional di_erential equatm
North-Holland Mathematics Studies, 204, Elseviee&se Publishers, Amsterdam, Heidelberg and Newk,Yor
2006.

F. Mainardi, The fundamental solutions for the fianal di_usion-wave equation, Appl. Math. Lett.,
9(6) (1996) 23-28.
Muralidhar, Pv, Y. Srinivasarao, And Msr Naidu. ""@wmlution Theorem For Fractional Laplace Transfofm.

Development (IJECIERD) 3.4 (2013): 37-40.

F. Mainardi, G.Pagnini, The role of the Fox-Wrighinctions in fractional subdiffusion of distributexider,
J. Comput. Appl. Math., 207 (2007) 245-257.

Thakur, A. K. and Panda, S. “"Some Properties of Triplplace Transform”, Journal of Mathematics and
Computer Applications Research (JMCAR),(2015) 22408 .

F. Mainardi, G.Pagnini, The Wright functions aslumns of the time-fractional diffusion equation,
J. Comput. Appl. Math., 141 (2003) 51-62.

Impact Factor (JCC): 4.1675 NAAS Rating 3.45



